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Abstract—We introduce a novel approach to ‘ ‘robustizing”

circuit optimization using Huber functions: both two-sided and
one-sided. Advantages of the Huber functions for optimization

in the presence of faults, large and small measurement errors,

bad starting points, and statistical uncertainties are described.
In this context, comparisons are made with optimization using

fl, & and minimax objective functions. The gradients and Hes-
sians of the Huber objective functions are formulated. We con-
tribute a dedicated, efficient algorithm for Huber optimization
and show, by comparison, that generic optimization methods
are not adequate for Huber optimization. A wide range of sig-
nificant applications is illustrated, including FET statistical

modeling, multiplexer optimization, analog fault location, and

data fitting. The Huber concept, with its simplicity and far-
-reaching applicability, will have a profound impact on analog

circuit CAD.

I. INTRODUCTION

ENGINEERING designers are often concerned with the

robustness of numerical optimization techniques, and

rightly so, knowing that engineering data is, with few ex-

ceptions, contaminated by model/measurement/statistical

errors.’

The classical least-squares (Q method is well known

for its vulnerability to gross errors: a few wild data points

can alter the least-squares solution significantly. The f?l

method is robust against gross errors [1], [2]. We will

show, however, that when the data contains many small

errors (such as statistical variations), the 11 solution can

be undesirably biased toward a subset of the data points.

This indicates that l?, is not suitable, in general, as a sta-

tistical estimator.

Neither the & nor the t?, method has flexible discrimi-

natory power to recognize and treat differently large (cat-

astrophic) errors and small (soft) errors. We introduce the

Huber function [3]-[5], which appears to be a hybrid of

the 11 and & measures. Compared with 12, the Huber so-
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lution is more robust w.r.t. large errors. Compared with

II, the Huber solution can provide a smoother, less biased

estimate from data that contains many small deterministic

or statistical variations. We demonstrate the benefits of

this novel approach in FET statistical modeling, analog

fault location, and data fitting.

We extend the Huber concept by introducing a “one-

sided” Huber function for large-scale optimization. For

large-scale problems, systematic decomposition tech-

niques have been proposed (e. g., [6], [7]) to reduce com-

putational time and prevent potential convergence prob-

lems. In practice, the designer often attempts, by

intuition, a ‘ ‘prelimina~” optimization with a smlall

number of dominant variables. The full-scale optimizat-

ion is performed if and when a reasonably good point is

obtained.

With a reduced number of variables, the optimizer may

not be able to reduce all the error functions at the same

time. For instance, the specification may be violated more

severely at some sample points (such as frequencies) than

at the others. In such situations, the minimax method is

preoccupied with the worst-case errors and therefore ‘be-

comes ineffective or inefficient. We demonstrate, through

microwave multiplexer optimization, that the one-sided

Huber function can be more effective and efficient than

minimax in overcoming a bad starting point.
We present a dedicated, efficient, gradient-based algo-

rithm for Huber optimization and show, by comparison,

that generic optimization methods, such as quasi-Newton,

conjugate gradient, and simplex algorithms, are not a{de-

quate when directly applied to minimizing the Huber ob-

jective functions. The gradients and Hessians of the Huber

objective functions are derived and their significance is

discussed.

II. THEORETICAL FORMULATION OF HUBER FUNCTIONS

The Huber optimization problem is defined as [3], [4]

minimize ~(~) 4 j$l Ok ($ (~)) (1)
x

where x = [xl X2 o “ “ x~] ~ is the set of variables and pk

is the Huber function defined as

[

f2/2 iflfl < k

Pk(f) = (2)
klfl – k2/2 iflfl > k

where k is a positive constant and&, .j = 1, 2, . “ - , m,
are error functions.

The Huber function ~k is a hybrid of the least-squares
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(Pz) (when I ~ I < k) and the (l (when I ~ I > k) functions.

As illustrated in Figs. 1 and 2, the definition of p~ ensures

a smooth transition between 12 and t, at I ~ I = k. This

means that the first derivative of p~ w. r.t. ~is continuous.

The (1 is robust against gross errors in the data [1], [2].

Since the Huber function treats errors above the threshold

(i.e., I ~ I > k) in the (I sense, it is robust against those

errors, i.e., the solution is not sensitive to those errors.

The choice of k defines the threshold between ‘ ‘large”

and “small” errors. By varying k, we can alter the pro-

portion of error functions to be treated in the 11or $ sense.

Huber gave a look-up table [3] from which k can be de-

termined according to the percentage of gross errors in the

data. If k is set to a sufficiently large value, the optimi-

zation problem (1) becomes least squares. On the other

hand, as k approaches zero, p~/k will approach the 11

function.

A. Gradient and Hessian

To further our insight into the properties of the Huber

formulation, we derive the gradient and Hessian of the

Huber objective function as follows.

The gradient vector of the Huber objective function F

w.r. t. x is given by

VF = ? Vlf: (3)
~=&

where

[

Q @k(J (~)) = j (~) ifl$(x)l s k

“ – a$ (x)
(4)

*k iflj(x)l > k

af (x) aj (x) a$ (x) T

1
0 [=-””” ~xn .

ax2
(5)

The structure of (3) is very similar to the gradient of/2

(least squares), which is

??1

VFe, = ~~1 fijj . (6)

By comparing (3) with (6), we can see that Vj, namely

the first derivative of p~ w. r.t. ~, serves as a weighting

factor in the Huber gradient. For \ ~ I = k, vj is defined

in (4) as j, which is the same as in the 12 gradient given

by (6). For I $ I > k, Vj is held constant at the value of fi
at the threshold. In other words, the Huber gradient can

be thought of as a modified l?2gradient, where the gross

errors are reduced to the threshold value.
The Hessian matrix of the Huber objective function F

w .r. t. x can be expressed as

H = ~~1 (dj~;~;~ + ‘J.fj”) (7)

where

f

a2pk (j (@) 1
d+

if Ij(x)l s k

af/2 (x) = o
(8)

if 1~(.x)l > k

t
F

Fig. 1. The i?, and 1’: objective functions in the one-dimensional case. The

!, function is resealed and shifted in accordance with the corresponding part
in the Huber function. It has the form F = k I j I — k2/2. The & function
has the form F = f2/2.
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Fig. 2. The Huber, P, and !Z objective functions in the one-dimensional
case. The strikes and dots represent the discrete points on the g, and Pz
curves, respectively, in Fig. 1, The continuous curve indicates the Huber

objective function.

(9)

Comparing (7) with the ~2Hessian matrix given by

we can see that Vj serves as a weighting factor to reduce

the contribution of gross errors in the data to the Hessian

matrix.
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B. One-Sided Huber Function

We present an extension of the Huber concept by intro-

ducing the “one-sided” Huber optimization defined as

t?l

minimize F(x) ~ j~l p: ($ (x)) (11)
x

where

.[

d(f) = f2/2 if O<f<k (12)

kf – kz/2 iff > k.

This one-sided Huber function is tailored for design op-

timization with upper andlor lower specifications. f is

truncated when negative because the corresponding de-

sign specification is satisfied.

The gradient vector of the one-sided Huber objective

function F w.r.t. x is given by

where

f-o if fi<O

The Hessian matrix of the one-sided Huber objective

function is given by

m

H = j~, wfur + t-f;) (15)

III. A DEDICATED ALGORITHM FOR HUBER

OPTIMIZATION

We present a dedicated, efficient algorithm for mini-

mizing the Huber objective functions, both one- and two-

sided. We have implemented this algorithm in the CAD

system 0SA90/hopeTM [8] as a new standard feature and

used it to generate the numerical results presented in this

paper.

The numerical algorithms proposed ior solving (1) are

of the trust region type. We calculate a sequence of points

{x,} intended to converge to a local minimum of F. At

each iterate XP, a linear function /j is used to approximate
the nonlinear function ~, j = 1, 2, s . s , m, and thus a

linearized model LP of F is constructed. This model is a

good approximation to F within a specified neighborhood

NP of the pth iterate XP. This neighborhood NP is intended

to reflect the domain in which the lJ approximations of the

$ are valid.

2281

Assume a tentative step h is being searched at the pth

iterate XD. If the search is successful, we go on to the nlext

iteration, i.e., xP + I

as

minimize LP (h)
h

where

= XP + h. The probl;m is formula~ted

m

A L(h, x,) = ,~, p~(zj(h, xp)) (17)—

Zj(h, XP) ~ $ (xP) + [f; (xp)lTh (18)

subject to the constraint h c Np, where

NP ~ {Xl 11X – Xp][ S 6P} (19)

and where II “ II denotes the Euclidean norm.

The difference between the Hessians of the true Huber

objective function (7) and this linearized model is the term

m

This error in approximating the true Hessian (7) is smaller

than in the $ case, namely,

??1

z f f“ .
j=, J J

We solve the foregoing problem (17) using an algo-

rithm similar to that of Madsen and Nielsen for the linear

Huber problem [9]. This method is based on the fact that

LP is a combination of quadratic functions which are linked

together in a smooth manner. Therefore, a Newton itera-

tion is very efficient, and can be proved to find the solu-

tion after a finite number of steps. The solution to this

linear problem is denoted by hp.
The trust region radius 6P is updated in each iteration.

We propose the usual updating scheme for trust region

methods (e. g., see Mor6 [10]). This is based on the ratio

F(xP) – F(xP + hP)
rP =

LP (0 – LP (hP)
(20)

i.e., the ratio between the decrease in the nonlinear fu nc-

tion and the decrease in the local approximation. If r,, is

close to 1 then we can afford a larger trust region in the

next iteration. On the other hand, if rp is too small, the

the trust region must be decreased.

The new point XP + hp is “only accepted if the objective

function F decreases by a factor no less than .s,. Other-

wise, another tentative step is calculated from XP using a

decreased trust region. A more precise step-by-step lde-

scription of the algorithm follows.

Step 1: Given XO and tiO > 0. Let O < S2 < 1 < S3.

(These constants are chosen according to our experience.

The algorithm is not sensitive to small changes in these

constants. ) Set the iteration count p = 1.

Step 2: Solve the trust region linearized subproblem to

find the minimizer hp of (17) subject to (19).

Step 3: If F(xP + hp) < (1 – S1)F(XP), let -VP+1 = XP
+ hp; otherwise let XP+ 1 = XP.

Step4: If rP s 0.25, reduce the size of the trust region
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Fig. 3. fl, ~cand Huber solutions for data fitting in the presence of errors.

by letting 6P+, = tiPSz; or if rp 2 0.75, increase the size

of the trust region by letting 8P+, = 8PS3; otherwise keep

the trust region size unchanged by letting 6P+ 1 = 8P.

Step 5: If the convergence criteria are satisfied, stop;

otherwise update the iteration count by letting p = p + 1

and repeat from Step 2.

It has been proved in [4] that this algorithm obeys the

usual convergence theory for trust region methods.

IV. COMPARISON OF 11, 12 AND HUBER METHODS IN

DATA FITTING

To illustrate the characteristics of the 11, (2 and Huber

solutions for data fitting problems in the presence of large

and small errors, we consider the approximation of ~ by

the rational function

F(x> t) =
xlt + x2t2

1 + x~t + x4t2
(21)

for O < t < 1 [2]. ~ is uniformly sampled at 0.02,0.04,
. . . 1. We deliberately introduced large errors at 5 of

the s~mple points and small variations to the remaining

data. The II, f?zand Huber solutions are obtained by op-

timizing the coefficients xl, X2, X3, and X4 in (21) to match

the sampled data using the respective objective functions.

The results are shown in Fig. 3. A portion of Fig. 3 is

enlarged in Fig. 4 for a clearer view of the details.

As expected, the least-squares solution suffers signifi-

cantly from the presence of the five erroneous points, On

the other hand, the II solution, according to the optimality
condition, is dictated by a subset of residual functions

which have zero values at the solution. In a sense, all the

nonzero residuals are viewed as large errors. This ten-

dency towards a biased PI solution, as dramatized in our

example, is undesirable if we wish to model the small

variations in the data.

The Huber solution features a flexible combination of

the robustness of the 11 and the unbiasedness of the 12. In

fact, the Huber solution is equivalent to an i’z solution with

the gross errors reduced to the threshold value k. In our

example, k is chosen as 0.04 according to the magnitude

of the small variations in the data.

0.8
x Huber

41
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Fig. 4. An enlarged portion of Fig. 3,

V. HUBER ESTIMATOR FOR STATISTICAL MODELING OF

DEVICES

One approach to statistical modeling of devices [1 l]-

[13] is to extract the model parameters from a sample of

device measurements and then postprocessing the sample

of model parameters to estimate their statistics (means,

statistical deviations, and correlations).
To estimate the mean of a parameter by optimization,

we define the error functions as

6($)=$-$’, j=l,2, ”.. ,N (22)

where @J is the extracted parameter value for the j th de-

vice and N is the total number of devices. Similarly, to

estimate the variances, we define

where V@denotes the estimated variance from which we

can calculate the standard deviation Co. The model param-

eters we use are extracted from the measurements of 80

FETs [14].
When the postprocessing is done using a least-squares

estimator, problems will arise if the measurements con-

tain gross measurement errors and/or involve faulty de-

vices. For example, consider the run chart shown in Fig.

5 of an extracted model parameter, namely the FET time-

delay r.
Most of the extracted values of r are between 2 and 2.5

ps, but there are a few abnormal values due to faulty de-

vices and/or gross measurement errors. These wild points

will severely affect the l?2 estimator. In fact, the other

model parameters extracted from those fatilty devices also

have abnormal values. In our earlier work [11], [12] using

the 12estimator, the abnormal data sets were manually ex-

cluded from the statistical modeling process.

The Huber function can be used as an automatic robust

statistical estimator. The threshold value k is chosen to

reflect the normal spread of the parameter values (e. g.,

we chose k = 0.25 ps for r).
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index
Fig. 5. Run chart of the extracted FET time-delay T.

TABLE I
ESTIMATED STATISTICS OF SELECTED FET PARAMETERS

Parametef’ T (L) ~ (Huber) 7 (e;)’ o+(/2) u+(Huber) U* (f:)”

L~ (nH) 0.04387 0.03464 0.03429 94.6 percent 21.8 percent 17.4 percent

G~~ (1 \KQ) 1.840 1.820 1.839 28.6 percent 6.3 percent 4.9 percent

1~~~ (mA) 47.36 47.53 47.85 14.0 percent 12.7 percent 11.3 percent

T (Ps) 2.018 2.154 2.187 26.3 percent

C,. (pF)

5.8 percent 3.4 percent

0.3618 0.3658 0.3696 8.2 percent 4,6 percent

K,

3.5 percent

1.2328 1.231 1.233 15.5 percent 10.8 percent 8.7 percent

“L~ represents the FET gate lead inductance, G~s the drain-sourc. conductance, ‘DSSthedrainSaturationcurrent,Tthe time-delay.CIOandKI are
parameters in the definition of the gate nonlinear capacitor.

bf~ denotes 12estimates after 11 abnormal sets are manually excluded [11].

Table I lists the means and standard deviations of a se-

lected number of model parameters we have obtained us-

ing the 12and the Huber estimators (the Materka and Kac-

przak FET model [15] is used). For comparison, we also

list the results obtained using the 12 estimator ajier the

abnormal data sets are manually excluded.

The impact of the abnormal data points on the i?zesti-

mates of the standard deviations is especially severe.

Compared with @, the Huber estimator does not require

manual manipulation of the data and is more appropriate

when there are data points that cannot be clearly classified

as normal or abnormal.

It should also be noted that although $ is effective for

individual device parameter extraction, it is not, in gen-

eral, suitable for statistical postprocessing. The & esti-

mate (median) depends on the order rather than the actual

values of the sample.
To illustrate the dependence of the Huber estimates on

the threshold k, we list in Table II the estimated statistics

of the parameter 7 for different values of k. We can also

define N. as the number of “small errors, ” i.e., the car-

dinality of the set {$ I I $ I s k}, at the solution of Huber

optimization for each value of k. Fig. 6 depicts N, versus

k, where N, is expressed as a percentage of the total num-

ber of devices N. The “knee” on the curve corresponds

to a solution that includes a majority of functions as

“small errors. ” The value of k at the “knee” is consis-

tent with our choice. Figs. 7 and 8 depict N, for two other

parameters, namely LG and CIO, respectively.

100

TABLE II
ESTIMATED STATISTICS FOR DIFFERENT VALUES

OF k

0.15
0.2
0.225
0.25
0.275
0.3
0.5
1
Oa

2.168
2.161
2.157
2.154
2.150
2.147

2.122
2.079
2.018

4.4 percent
5.1 percent
5.4 percent
5.8 percent
6.2 percent
6.6 percent
9.6 percent

15.7 percent
26.3 percent

I
00 0:25 0.5 0:75 -–1

k

Fig. 6. Percentage of “small errors” for the FET time-delay ~ versus the
threshold k.
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0 I
o 0.0125 0.025 0.0375 0.05

k

Fig. 7. Percentage of “small errors” for the FET gate lead inductance .L~

versus the threshold k.

j’ 25
Q)

ii

I
00 0.05 0:1 0:15 0,2

k

Fig. 8. Percentage of “small errors” for the FET model parameter CIO
versus the threshold k.

VI. APPLICATION TO ANALOG FAULT LOCATION

The /, method has been applied successfully to the

problem of fault location in analog circuits [1], [16], [17].

Typically, a faulty circuit contains only a few faults and

possibly many small tolerances for the other elements.

Also, the measurements taken on the faulty circuit are

usually insufficient for complete parameter identification

and, therefore, a robust optimization procedure is needed.

The fault location problem can be formulated as the II

optimization [1]

(24)

subject to

V;–v; =o

where x = [xl X2 “ “ . x,,] r is a vector of circuit param-

eters and X“ represents the nominal parameter values. A xl

1 G1 z

G2

3 6

Gg @o G1l Gn

7 10

11

Fig. 9. The resistive mesh circuit.

= xi – x: represents the deviation of the ith parameter

from its nominal value. V?, “ “ “ , V; are K measure-

ments on the circuit under test (e. g., voltages measured

at accessible nodes under one or more excitations). V;,
. . . Vi are the calculated circuit responses.

Ins~ead of the constrained optimization problem (24)

we use the Huber method to minimize the following pen-

alty function

n+K

minimize ZI p~ (fi (x)) (25)
x

where

j(x) = Ax,/x~, i=l,2, ”””, n

fn+i(@ = A(K - w), i=l,2, ””O, K( 26)

and@l, i=l,2, ..-, K, are appropriate multipliers for

the penalty terms.

Consider the resistive mesh network shown in Fig. 9

[1], [16]. The nominal element values are Gi = 1.0 with

tolerances ~i = +0.05, i = 1, 2, “ c “ , 20. Node 12 is

taken as the reference node, and nodes 4, 5, 8, and 9 are

assumed to be internal and inaccessible for measurement.

The voltage measurements at the other nodes are used for

fault location.

The actual parameter values of a faulty network are

listed in Table III. Two faults are assumed in the circuit,

namely G2 and G18. A single excitation (a dc current
source) is applied to node 1. Simulated voltage measure-

ment data is obtained by circuit simulation using the ac-

tual parameter values. The nominal parameter values are

used as the starting point for optimization. The results

from the 11optimization and Huber optimization are com-

pared in Table III. The threshold k for the Huber function

is chosen as 0.05, commensurate with the tolerances of
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TABLE HI

FAULT LOCATION OF THE RESISTIVE MESH CIRCUIT

Percentage Deviation

Nominal Actnal
Element Value Value Actual f, Huber

G,
G,
G3

G4
G5

G6

G,

G8
G9
G,.

G,,

G12

G,3
G,.
G,,
G,6
G,,

G,g
G19
G20

1.0
1.0
1.0

1.0
1.0

1.0

1.0

1.0
1.0
1.0

1.0

1.0

1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0

0.98 –2.0 0.00 –0.11
0.50 –50.0” –48.89 –47.28
1.04 4.0 0.00 –2.46
0.97 –3.0 0.00 –1,18
0.95 –5.0 –2.70 –3.16
0.99 –1.0 0.00 –0,06
1.02 2.0 0.00 –0.19
1.05 5.0 0.00 –0.41
1.02 2.0 2.41 3.75
0.98 –2.0 0.00 0.39
1.04 4.0 0.00 –0.37
1.01 1.0 2.73 1.32
0.99 –1.0 0.00 –0.26
0.98 –2.0 0.00 –0.50
1.02 2.0 0.00 –0.05
0.96 –4.0 –3.36 –2.67
1.02 2,0 0.00 –0.61
0.50 –50.0” –50.09 –47.33
0.98 –2.0 –1.41 –3.81
0.96 –4.0 –4.40 –4.72

“Fanlts,

the elements. Thepenalty multipliers P,in(26)are set to

1000, sufficiently large to ensure that the nonlinear con-

straints (circuit equations) are satisfied.

We tested this example for four other different starting

points. The Huber approach correctly located the faults in

all the cases. The I?l method was successful in three of the

cases, but failed in one of the cases (trapped in a different

local minimum).

VII. ONE-SIDED HUBER OPTIMIZATION FOR CIRCUIT

DESIGN

In a large-scale design problem, we often wish to op-

timize a small number of dominant variables in order to

obtain a good starting point for the following full-scale

optimization.

We consider a five-channel 12 GHz multiplexer with a

total of 75 optimizable variables including waveguide

manifold spacings, channel filter coefficients, and input/

output couplings [18]. We know that the multiplexer re-

sponses are highly sensitive to the spacing lengths, which

are initially set to half the wavelength corresponding to

the channel center frequencies. The common port return

loss and individual channel insertion loss responses at the

starting point are shown in Fig. 10.

We first try to optimize a small number of dominant

variables. We select the spacings and the channel input

transformer ratios (10 variables) and consider a lower

specification of 20 dB on the common port return loss.

The minimax solution with these variables is shown in

Fig. 11 and the one-sided Huber solution is shown in Fig.

12. The worst-case errors in these two figures are similar.

Since the worst-case errors cannot be further reduced by

changing the selected variables, the minimax optimizer

gains nothing from directing effort elsewhere. Using one-

sided Huber optimization, on the other hand, we were able

“il.98 12.04 12.1 12.16 12.22
frequency (GHz)

Fig. 10. Multiplexer responses at the starting point, showing the common

Dort retnrn loss (solid line) and the individual channel insertion losses
~dashed line).

11.98 12.04 12.1 12.16 12.22
frequency (GHz)

Fig. 11. Multiplexer responses after the minimax optimization with 10
variables: spacings and channel input transformer ratios; the common port
return loss (solid line) and the individual channel insertion losses (dashed

line). This result hardly improved npon the starting point shown in Pig.
10.

frequency (GHz)

Fig. 12. Multiplexer responses after the one-sided Huber optimization with
10 variables: spacings and channel input transformer ratios; the common
port return loss (solid line) and the individual channel insertion losses
(dashed line). This result is significantly better than the minimax solution
of Fig. 11.

1
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frequency (GHz)

Fig. 13. Multiplexer responses after the minimax optimization with the

full set of 75 variables, showing the common port return loss (solid line)

and the individual channel insertion losses (dashed line).

to obtain a good starting point for subsequent optimiza-

tion. The one-sided Huber optimization took 28 min on a

Sun SPARCstation 1+.
From the solution shown in Fig. 12, we increase the

number of variables from 10 to 45, include an upper spec-

ification of 2 dB on the channel insertion loss, and restart

the one-sided Huber optimization. Then a minimax op-

timization with the full set of 75 variables is performed,

resulting in the multiplexer responses shown in Fig. 13.

VIII. COMPARISON OF DEDICATED AND GENERIC

ALGORITHMS

Since the Huber objective function is continuous and

has a continuous gradient, it maybe tempting to conclude

that h is a straightforward matter to formulate the objec-

tive function and then minimize it by a generic algorithm,

such as a quasi-Newton or direct search method.

We conducted a comparison between our dedicated al-

gorithm (Section III) and three generic algorithms avail-

able in the 0SA90/hopeTM system: quasi-Newton, con-

jugate gradient, and simplex search.

The first test case is to estimate the mean value of the

FET parameter T as described in Section V. Only one vari-

able is involved in this case, and all ,the algorithms under

test converged to the correct solution. Table IV lists the

number of function evaluations required by each algo-

rithm from four different starting points. It shows that our

dedicated Huber algorithm is more efficient than the ge-

neric ones.

We also attempted to apply the generic algorithms to

the data fitting problem of Section IV, which involves four

variables. None of them is able to find the correct solution

unless starting very close to the solution. It attests to the

need for the dedicated algorithm for solving multidimen-

sional problems.

As derived in Section II, the Hessian of the Huber ob-

jective function is discontinuous wherever one of the error

functions (~) crosses the threshold value. This may pose

a serious problem for generic algorithms that explicitly

rely on the continuity of the Hessian matrix.

TABLE IV

NUMBER OF FUNCTION EVALUATIONS REQUIRED BY DIFFERENT
ALGORITHMS”

Starting Point

Algorithm 1.5 2 2.25 3

Dedicated Huber 4 4 4 4

Quasi-Newton 8 5 5 7

Conjugate-gradient 13 13 11 14

Simplex 26 16 16 24

“The optimization problem is to estimate the mean of FET parameter ~
using the Huber objective function.

IX. CONCLUSIONS

We have introduced the unique Huber concept and pre-

sented novel results for analog circuit CAD. We have

demonstrated that the Huber concept is consistent with

practical engineering intuition. It should have a profound

impact on modeling, design, fault diagnosis, and statis-

tical processing of circuits and devices. We have ex-

ploited the robustness of Huber optimization, supported

by strong numerical evidence. The similarities and differ-

ences between the Huber and i?l, 12 and minimax objective

functions have been discussed in a practical context. We

have created the one-sided Huber function as an extension

to accommodate upper and lower specifications in circuit

optimization. A dedicated algorithm for Huber optimiza-

tion has been presented. It has been shown by comparison

to be more effective and efficient than generic minimiza-

tion algorithms.
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